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The influence of the rod-disk excluded volume on the existence of a bicritical point in a mixture of rodlike
and disklike particles has been examined using the second virial theory. Within the approximation in which the
interaction kernel is expanded to second order in a basis of symmetry-adapted functions, it is shown from a
combination of bifurcation analysis and numerical solution of the Euler-Lagrange equations for the free energy
that there exists a value of the rod-disk excluded volume parameter for which the bicritical point disappears.
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I. INTRODUCTION

In recent years much effort has been put into the inve
gation of biaxial nematic phases both experimentally a
theoretically. A necessary but not sufficient condition in pu
systems is that particles should exhibit biaxial symmetry.
addition, the interparticle interaction parameters must fu
very special relations~see, e.g.,@1#!. Obtaining stable, pure
biaxial thermotropic nematic liquid crystals in practice h
remained a formidable challenge.

Much better chances of success are foreseen when de
with mixtures of rodlike and disklike particles. Experiment
evidence for the existence of the biaxial phase was cle
established by Yu and Saupe@2# for the lyotropic mixture of
potassium laurate, decanol, and water (D2O). Because am-
phiphilic compounds in aqueous solution tend to aggreg
this system contains cylindrical micelles whose sha
changes from cylindrical rodlike to bilayer disklike as
function of temperature or concentration. It is not obvio
what kind of micelles are formed in the region of the biax
phase and whether their cylindricity is maintained. Howev
since the shape anisotropy necessary for biaxial phase
mation is really very special and the micelles existing clo
to the uniaxial nematic–biaxial nematic transition are cyl
drical, thus very far from fulfilling these conditions, one c
be fairly confident that the biaxiality observed in amphiphi
systems is caused either by mixing of rodlike and diskl
micelles or by some other phenomenon connected wit
change of identity of the micelles. In the case of thermot
pics, the very existence of biaxial phases is still in doubt:
us note that the molecules of the classic para-azoxyanis
PRE 581063-651X/98/58~3!/3229~8!/$15.00
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4-methoxybenzlidene-48-n-butylaniline, or cyanobipheny
homologs, with their rigid and planar pairs of benzene rin
are in fact biaxial but do not form biaxial phases.

Theoretically, the biaxial phase has been found in sev
models of rod-disk mixtures. The pioneering work of Albe
@3# assumed purely steric interactions between particles
cated at the sites of a lattice whose principal axes are c
strained to lie along one of the space-fixedx, y, or z direc-
tions. The corresponding phase diagram exhibits four pha
isotropic, calamitic ~rodlike! uniaxial nematic, discotic
~disklike! uniaxial nematic, and biaxial. Upon compressi
the system from the isotropic phase, there is a first-or
transition into an ordered phase that has the symmetry of
majority component. There is, however, one special po
called the Landau point or bicritical point, where the tran
tion is second order into the biaxial phase. The uniax
biaxial phase boundaries come together in a sharp cus
this point.

All subsequent theoretical work on mixtures has co
firmed the above topology of the phase diagram. Quantita
differences arise owing to details of the models or of t
approximations employed. In 1982@4# Rabin, McMullen,
and Gelbart applied they expansion to a mixture of hard
rods and disks with continuous positional and orientatio
degrees of freedom. A complete analysis of the same mo
albeit at the level of the second-virial coefficient, has be
performed by Stroobants and Lekkerkerker@5#, who gave a
detailed description of the behavior of the order paramet
free energies, and phase boundaries as functions of com
sition, density, and some chosen shape anisotropy. N
however, that they expansion does not change the bifurc
3229 © 1998 The American Physical Society
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tion diagrams or order parameters but simply rescales
density. In the above continuous models, excluded volum
are approximated by their Legendre polynomial expans
truncated at second order.

In studies of mixtures it is essential to investigate t
stability of the biaxial phase with respect to demixing. Th
is most important from the experimentalist’s point of vie
and also for potential applications. Using the Zwanzig mo
@6#, van Roij and Mulder@7# estimated the critical value o
the length-to-width ratio of particles for which a stable bia
ial phase might appear. When present, the biaxial phas
stable in a triangular region of the composition-density ph
diagram. Attempts at a more realistic description of nema
genic molecules need to include not only steric interacti
but also attractive forces and comprise results such as the
der Waals theory@8# and the mean-field theory of the Rui
grok modification of Lennard-Jones interactions@9# or of
Gay-Berne mixtures@10#. Within the Maier-Saupe theory
Palffy-Muhoray and de Bruyn@11# have given a negative
answer to the question of whether there is a stable bia
phase. Results of computer simulations of various mixtu
have also highlighted stability problems@12#. In all these
approaches, biaxiality is driven by interactions between
like particles.

One of the characteristic features of the phase diagram
rod-disk liquid crystal mixtures, already mentioned above
the existence of the bicritical, or Landau, point, where bia
ial, uniaxial, and isotropic phases meet. When the partic
have the same proper volume, in the second virial appr
mation, the bicritical point is found at composition 1/2.
this case the transition from the isotropic phase to the an
tropic one is second order due to the fact that the cubic t
in the expansion of the free energy in the leading-order
rameter vanishes. So far it has been thought that the sec
order character justifies that the anisotropic phase invol
has to be of biaxial symmetry. In this paper I show that, if
a hard-rod–hard-disk mixture the spherical harmonic exp
sion of the excluded volume is truncated at second or
then for a sufficiently large rod-disk excluded volume t
anisotropic phase is uniaxial.

The purpose of this paper is to study the influence of
rod-disk excluded volume on the existence of the bicriti
point in a mixture of rods and disks. The paper is organiz
as follows. Section II summarizes the theoretical backgro
for the case considered and introduces a complete bifurca
analysis. Section III presents numerical results. Finally, S
IV contains a summary of the conclusions.

II. SECOND VIRIAL THEORY OF A HARD ROD-DISK
MIXTURE

A. L2 rod-disk model

In this paper I consider a binary mixture of hard rods~A
particles! and hard disks~B particles!. The length of a rod is
LA and its width isDA and those of a disk areLB andDB ,
respectively. The total number of particles in the system
N5NA1NB , the total densityr̃5N/V, and the mole frac-
tions of rods and disksxA5NA /N and xB5NB /N, respec-
tively. Such a system is the simplest model of a rod-d
mixture and has been quite widely studied@4,5#. The goal of
this paper is to extend the knowledge of hard rod-disk m
e
s

n

l

is
e
-
s
an

al
s

-

of
s
-
s
i-

o-
m
-

nd-
d

n-
r,

e
l
d
d
on
c.

is

k

-

tures by showing the possibility of a different type of pha
diagram and analyzing the influence of the rod-disk inter
tion parameter on the bicritical point.

The free energy functional for a binary system com
from density-functional theory@4,5,7,11# ~it is also derivable
from the basic principles of the Bogoliubov-Born-Gree
Kirkwood-Yvon hierarchy@9#! and for the hard rod-disk
mixture takes the form

bF
N

5xAln xA1xBln xB1xAE cAln cAdvW

1xBE cBln cBdvW 1
1

2
r̃xA

2^EAA&1
1

2
r̃xB

2^EBB&

1 r̃xAxB^EAB&2lAS E cAdvW 21D
2lBS E cBdvW 21D1 ln

N

4pV
21, ~1!

wherecA andcB are the single-particle orientational distr
bution functions of rods and disks,vW is the unit vector along
the main axis of a given particle, andlA ,lB are the
Lagrange multipliers that ensure normalization of the orie
tational distribution functions. The interaction terms have
form

^Ei j &5b i j E dvW i E dvW jc iE
i j ~vW i•vW j !c j , ~2!

whereb i j E
i j (vW i•vW j ) is the excluded volume of two particle

i and j with fixed orientations andb i j alone stands for the
angular average of the excluded volume of those two p
ticles. For rod-rod, disk-disk, and rod-disk excluded volum
the following formulas hold:

^EAA&5
4

p
b AAE dvW 1AE dvW 2Ac1A sin g~vW 1A ,vW 2A!c2A ,

~3!

^EBB&5
4

p
b BBE dvW 1BE dvW 2Bc1B sin g~vW 1B ,vW 2B!c2B ,

~4!

^EAB&52b ABE dvW 1AE dvW 2Bc1Aucosg~vW 1A ,vW 2B!uc2B ,

~5!

with

b AA5
p

4
DALA

2 , b BB5
p2

16
DB

3 , b AB5
p

16
DB

2LA , ~6!

whereg(vW i ,vW j ) is the angle betweenvW i andvW j . Minimiza-
tion of the functional~1! yields the set of equations
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ln c1A52
8

p
r̃xAbE sin g~vW 1A ,vW 2A!c2AdvW 2A

24r̃xBqbE ucosg~vW 1A ,vW 2B!uc2BdvW 2B1
lA

xA
,

~7!

ln c1B52
8

p
r̃xBrbE sin g~vW 1B ,vW 2B!c2BdvW 2B

24r̃xAqbE ucosg~vW 1A ,vW 1B!uc1AdvW 1A1
lB

xB
,

~8!

which are the self-consistent integral equations for the dis
bution functionsc1A andc1B and I also used the notation o
@5#: b AA5b, b BB5rb, and b AB5qb. When the excluded
volumes of the particles of the same kind in the isotro
phase are equal,r 51. Introducing the dimensionless densi
r5br̃, one is left with the only one parameterq, which is a
function of molecular shapes and determines the value of
rod-disk excluded volume.

A basic tool that is used to operate on the orientation
dependent objects are the Wigner standard rotation ma
elementsDm,n

j (V) @13#, which are certain complex function
of the Euler anglesV5(u,f,c). In practice, usage of them
causes troubles and is very inconvenient. Taking also
account their complex character, it is apparent that the n
for real symmetry-adapted functions has arisen. In the c
of the biaxial symmetry the following definitions have be
given by @1# and @14#. In the first,

Dm,n
j ~V!5~ 1

2& !21dm01dn0 (
s,s85$21,1%

Dsm,s8n
j

~V!, ~9!

only even indicesj ,m,n are allowed (0<m,n< j ); in the
second, it is shown that odd values ofj are also possible
(2<m,n< j ):

Dm,n
j ~V!5~ 1

2& !21dm01dn0

3 (
s,s85$21,1%

~21! j ~s82s!/2Dsm,s8n
j

~V!.

~10!

For the analysis of theD2h symmetry of the biaxial phase
application of the following generators is recommended@14#:
rotation ofp around thez axis Vz(p), rotation ofp around
the y axis Vy(p), and inversionI . These three symmetr
operations change Euler angles as (p1f,u,c), (p2f,p
2u,p1c), and (p1f,p2u,p2c), respectively, and the
following equalities for the Wigner matrix elements hold:

Dm,n
j

„Vy~p!V…5~21! j 1mD2m,n
j ~V!,

Dm,n
j

„Vz~p!V…5~21!mDm,n
j ~V!, ~11!

Dm,n
j ~ IV!5~21! j 1nDm,2n

j ~V!.
i-

c

e

l-
ix

to
ed
se

States before and after the symmetry transformations sh
be equivalent and thus appropriate conditions for the indi
allowed in Wigner matrices emerge in Eqs.~9! and ~10!.

A standard way of solving Eqs.~7! and ~8! is to expand
interaction kernels and functions into a series of symme
adapted functions for the biaxial phase@1,14# and then to
solve iteratively the set of self-consistent equations, wh
number depends on the maximum order of terms include
the series. The general expansion of the excluded volume
the present case~functions sing and ucosg u!,

E~vW i•vW j !5(
l .0

El
i j Pl~vW i•vW j !, ~12!

would also contain odd-order Legendre polynomials. Ho
ever, because of the symmetry properties imposed on
distribution functions, all integrals containing these terms
fectively vanish.

Following @5#, I retain terms up to second order onlyl
52). Thus the model interaction no longer describes r
hard rods or disks and becomes of the Maier-Saupe ty
henceforth I will call it theL2 rod-disk model.

Because molecules are uniaxial, their orientational or
~uniaxial or biaxial! is described in terms of angular averag
of only two symmetry-adapted functions

P2~u!5 1
2 ~3 cos2 u21!, D~u,f!5 1

2) sin2 u cos 2f,
~13!

coinciding with D0,0
2 (V) and D2,0

2 (V) in @1#. ~For biaxial
molecules, the full set of four symmetry-adapted functio
would be required.!

Within the L2 model the functions appearing in the ke
nels of integrals~7! and~8! and relevant for the biaxial sym
metry are

sin g5
p

4
2

5p

32
P2~cosg!, ~14!

ucosgu5
1

2
1

5

8
P2~cosg!. ~15!

The relation between Legendre polynomials depending
the cosine of the relative angleg of two particlesi and j @as
in Eqs.~14! and~15!# and symmetry functions dependent o
the orientations of the individual particlesu i ,f i ,u j ,f j is

Pl~vW i•vW j !5(
l ,m

4p

2l 11
~21!mYm

l ~u i ,f i !Y2m
l ~u j ,f j !,

~16!

where Ym
l are the standard spherical harmonic function

(2 l<m< l ) @13#. In particular, one can rewrite Eq.~16! as

Pl~vW i•vW j !5Pl~cosu i !Pl~cosu j !

1 (
m51

l
~ l 2m!!

~ l 1m!!
Pl

m~cosu i !Pl
m~cosu j !

32 cos@m~f i2f j !#, ~17!

wherePl
m are the associated Legendre polynomials.
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The above theory allows for the numerical analysis of
properties of a hard rod-disk mixture. I would like to apply
to investigate the influence of the rod-disk excluded volu
on the bicritical point.

To learn about the structure of the possible phase
grams for the mixture considered I will have to look at t
solutions of Eqs.~7! and ~8!. Note first that the trivial solu-

tions ec 0
A,B

51/4p corresponding to the isotropic phase a
ways exist for any density and compositions. Then, at so
higher densities, the forms of the distribution functions w
gain orientational-dependent contributions indicating ani
tropic phases solutions. These solutions will continuously
furcate from the isotropic branch. However, only in the ca
of the second-order transitions do the bifurcation points
incide with the transition points. One may assume that cl
to the bifurcation points the anisotropic solutions would co
tain only linear orientational order terms or symmetr
adapted functions of the lowest order. Thus Eqs.~7! and~8!
in the vicinity of the bifurcation will take the form of a
simple set of two linear equations. In the following subse
tions I will present the way of finding bifurcation points du
to isotropic (I ) –uniaxial nematic~UN! bifurcation and then,
likewise, for the UN–biaxial nematic~BN! bifurcation.

B. Analysis of bifurcation to the uniaxial phase

Let us assume that close to the isotropic bifurcation po
the orientational distribution functions of the uniaxial nem
atic phase have the form

c5e~c01eP2!, ~18!

wheree is an ~infinitesimally small! scalar order paramete
andec0 is the orientation distribution function of the isotro
pic phase. Under this assumption and using Eqs.~14!, ~15!,
and ~17!, the self-consistency equations~7! and ~8! read

c0
A1eAP2~1!1rxAE F22

5

4
P2~1!P2~2!G

3e@c01eAP2~2!#d~cosu2!df2

1rxBqE U21
5

2
P2~1!P2~2!U

3e@c01eBP2~2!#d~cosu2!df25
lA

xA
, ~19!

c0
B1eBP2~1!1rxBE F22

5

4
P2~1!P2~2!G

3e@c01eBP2~2!#d~cosu2!df2

1rxAqE U21
5

2
P2~1!P2~2!U

3e@c01eAP2~2!#d~cosu2!df25
lB

xB
. ~20!

For small values ofx one can approximateex511x1¯

and the above set of equations splits into the isotropic
and the more interesting nematic part, which contains
e

e
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e
l
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e
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-

t
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e

order parameterseA,eB and the angular functionP2(1).
Multiplying Eqs. ~19! and ~20! by P2(1) and integrating
over the whole range of the variablesu1 andf1 , effectively
one can get the set of equations

eA~12prxAI A!1eBrxB2pI Bq50, ~21!

eB~12prxBI B!1eArxA2pI Aq50, ~22!

whereI A,B5ec0
A,B

51/4p. Equations~21! and~22! yield r* ,
the bifurcation density, as the root of the characteristic eq
tion detM50, whereM is the matrix of coefficients multi-
plying eA,B:

M5S 12prxAI A rxB2pI Bq

rxA2pI Aq 12prxBI B
D . ~23!

The characteristic equation reads:

~12prxAI A!~12prxBI B!2q2r24p2xAxBI AI B50.
~24!

The lowest positive solution of Eq.~24! gives the density at
which one can expect a bifurcation from the isotropic to t
uniaxial nematic phase.

C. Analysis of bifurcation to the biaxial phase

Let us now write the biaxial solution close to the bifurc
tion point in the formcB5exp(cn1eD) @where cn is the
uniaxial-nematic orientational distribution function, assum
known, and D is as in Eq. ~13!#. Then, by the above
isotropic-uniaxial phase analysis, one can obtain the biax
nematic bifurcation equations as

eAD~1!2prxAE @Y2
2~1!Y22

2 ~2!1Y2
2~2!Y22

2 ~1!#

3@11eAD~2!#ecn
A
d~cosu2!df2

12prxBqE @Y2
2~1!Y22

2 ~2!1Y2
2~2!Y22

2 ~1!#

3@11eBD~2!#ecn
B
d~cosu2!df250, ~25!

eBD~1!2prxBE @Y2
2~1!Y22

2 ~2!1Y2
2~2!Y22

2 ~1!#

3@11eBD~2!#ecn
B
d~cosu2!df2

12prxAqE @Y2
2~1!Y22

2 ~2!1Y2
2~2!Y22

2 ~1!#

3@11eAD~2!#ecn
A
d~cosu2!df250, ~26!

where I used Eq.~16! for the excluded volumes. The expre
sion with spherical harmonicsY2

2(1)Y22
2 (2)1Y2

2(2)Y22
2 (1)

is equal to 2C sin2 u1 sin2 u2 cos 2(f12f2), where
C515/32p. Again, multiplying both sides of Eqs.~25! and
~26! by the functionD(1) and integrating over the full set o
orientational variables, bearing in mind that cos(a1b)
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5cosa cosb1sina sinb and *0
2p sin 2f cos 2f50, the

following set of equations for the uniaxial-biaxial bifurcatio
is obtained:

eA~12prxAWA!1eBrqxB2pWB50, ~27!

eB~12prxBWB!1eArqxA2pWA50, ~28!

where WA,B54pC*0
1 sin4 ue(cn

A,B)d cosu and ecn
A,B

are the
equilibrium orientational distribution functions of speciesA
andB in the uniaxial nematic phase. Then the characteri
equation for Eqs.~27! and ~28! reads

~12prxAWA!~12prxBWB!2r24p2xAxBWAWB50.
~29!

To find the bifurcation points of the uniaxial-biaxial tran
sition one needs to know explicitly the orientational distrib
tion functions of speciesA and B in the uniaxial nematic

phasee(cn
A,B). They are found from the consistency equatio

~7! and ~8! restricted to uniaxial symmetry. Then one c
search for bifurcation points for different compositions
examining the roots of Eq.~29!. SinceWA,B are dependen
on r through the orientational distribution functions, one h
to look for solutions of Eq.~29! self-consistently. The tech
nique is to find numerically a value forW for a givenr and
xA and then put it into the bifurcation equation and find t
desired root. If it is not the same as the density used, cha
r and repeat the procedure until you get the desired den

Equation~29! becomes Eq.~24! if one replacesWA and
WB by their isotropic counterpartsI A and I B . This means
that a certain phase represented by the functionD bifurcates
from the isotropic phase exactly at the points where
uniaxial phase bifurcates. A similar result has been obtai
in @5# for the equimolar composition, where the authors
garded it as sufficient proof that the transition isalways to
the phase of biaxial symmetry. The above analysis sh
that the theoretically obtained densities for the isotrop
uniaxial nematic bifurcation are the same as isotrop
biaxial nematic bifurcation densities forany composition.
From @1# one knows that it is possible to express the uniax
solution close to the bifurcation points in terms of the ‘‘b
axial’’ D function by performing appropriate rotations of th
reference system. This is responsible for the fact that
solution of theI -UN bifurcation analysis coincides with th
result for theI -BN bifurcation. Moreover, one can conclud
that I -BN bifurcation analysis is not an appropriate tool f
finding bifurcation points from the isotropic to a real biaxi
phase and one has to look for another sufficient tool. It tu
out that this can only be provided by consideration of
UN-BN bifurcation. If the set of solutions of the UN-BN
bifurcation intersects the set of solutions of theI -UB bifur-
cation, then one can be sure that these points refer to
bifurcation from the isotropic to the phase of biaxial symm
try.

From the above considerations an important ques
arises, namely, how to distinguish between the real bia
phase and a uniaxial phase in the rotated frame. Both of t
contain nonzero averages of theD(u,f) function. The sim-
plest possibility is to compare values of the free energy
the different phases or to use formulas that relate order
ic
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rameters in the frame where the preferred orientation of
molecules is along thez axis to the ones obtained in th
rotated frame.

III. BIFURCATION DIAGRAMS
AND ORDER PARAMETERS

A typical bifurcation diagram~here the rod-disk param
eter q50.8! obtained on the basis of solutions of Eqs.~24!
and~29! is shown in Fig. 1. So far, all papers that introdu
different models of rod-disk mixtures present phase diagra
of a similar structure@5,7,11,15#. ~Remember that the bifur
cation points differ slightly from the transition points fo
first-order transitions.!

Since the proper volumes of particles are the same,
diagram is symmetric around the compositionx51/2. The
isotropic-uniaxial transition line has the form of a well wit
a minimum atx51/2. At this point there is also a transitio
from the isotropic phase straight into the biaxial phase.
higher densities the biaxial phase is sandwiched betw
rod-rich and disk-rich uniaxial phases.

The isotropic-to-uniaxial transition is first order, whic
means that, as far as ordering is concerned, there are ju
in the order parameters. The only exception is the poinx

FIG. 1. Bifurcation diagram for the rod-disk excluded volum
parameterq50.8.

FIG. 2. Order parameters vs density for the equimolar poinx
51/2 and the rod-disk excluded volume parameterq50.8.
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51/2 ~equimolar point!. In this case the transition point an
the bifurcation point coincide and the transition is seco
order. Order parameters rise from zero on increasing the
sity of the system. This is a consequence of the vanishin
the cubic term in the free energy, which has been the so
of the belief that the anisotropic phase occurring at this po
has to be of biaxial symmetry. Transitions from the uniax
to the biaxial phase are always second order.

Figure 2 shows the behavior of the order parameters
density at the pointx51/2. The nonzero values ofDA and
DB indicate a biaxial phase that bifurcates straight from
isotropic phase. The order parameters presented are th
erages of the leading symmetry-adapted functions@Eq. ~13!#
performed with the obtained solutions for the distributi
functions:

P2i5E P2~u!c i~u,f!dvW ,

Di5E D~u,f!c i~u,f!dvW ~ i 5A,B!. ~30!

FIG. 3. Bifurcation diagram obtained for the parameterq52
without the four-phase bicritical point.

FIG. 4. Order parameters vs density for the equimolar poinx
51/2 and the rod-disk excluded volume parameterq52.
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In Fig. 3 I show the possibility for the bifurcation dia
gram, obtained in the case of an increased rod-disk param
q52. In spite of the fact that the general outlook of th
picture is similar to that previously discussed, a differe
qualitative feature occurs. For the compositionx51/2 there
is no longer a common point for the isotropic, uniaxial, a
biaxial phases~no bicritical point! and the whole uniaxial-
biaxial transition curve is shifted towards higher densiti
Both isotropic-uniaxial and uniaxial-biaxial transitions a
now second order. This can also be seen from Fig. 4, wh
all order parameters rise from zero without a jump. In th
figure one can see that on increasing the density, the p
that bifurcates from the isotropic solution atr* 51.6 is of
uniaxial symmetry and then the biaxial solution appears
r* 52.45. Thus solution of the self-consistency equatio
justifies, as had been expected, the absence of a bicri
isotropic-biaxial point.

An interesting question is what happens to the order
rameters of speciesA and B in the uniaxial phase in the
density range between the isotropic-uniaxial and uniax
biaxial curves and how the system stops being rodlike

FIG. 5. Composition-dependent order parameters of the unia
region ~densityr52!.

FIG. 6. Dependence of the isotropic uniaxial and uniaxial bia
ial bifurcation densities vs excluded volume parameterq for the
composition 1/2.
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becomes disklike. Changing smoothly the compositionxA
and keeping the density atr52, I obtained the following
behavior of the order parameters~Fig. 5!. Nonzero values of
the order parameters appear at the isotropic-uniaxial nem
transition points and form a shark-jaw-like picture. In t
rod-rich phase the uniaxial order parameter for rodsP2A is
greater than zero, whereas the one for disksP2B is less than
zero. In the left half of the picture they are shown as so
lines. However, there exists another possibility when the
der parameters have signs opposite to these. This is obta
by using two reference frames. The first one, which we w
call the rod-phase reference frame, has thez axis along the
preferred direction of rods in the rod phase. In the sec
one, the disk-phase reference frame, thez axis points along
the preferred direction of disks in a discotic phase, which
perpendicular to thez axis of rods~lies in thexy plane of the
rod frame!. The dashed lines are the order parameters
tained in the frame of character opposite to that of the ph
The right half of the picture is a mirror image of the left ha
rodlike features are changed into disklike features. This s
metry about the equimolar point is caused by the condit
of equal proper volumes of the particles. Being restricted
one reference frame, for instance, the rod-phase frame
rod-rich phase approaches the equimolar point with a p
tive value of the main~uniaxial! order parameter and jump
to a negative value in the discotic phase. In this sense
may say that there is a first-order transition at the equim
point. However, this transition does not refer to the symm
try of the phases since both of them are cylindrical.

Figure 6 shows the dependence of the isotropic-unia
and uniaxial-biaxial bifurcation densities on the exclud
volume parameterq for the compositionx51/2. For the
isotropic-uniaxial curve a descending tendency is obser
due to the fact that increasingq corresponds to lengthenin
the rods. Forq.1.4 there appears a gap between the bia
and isotropic density regions due to the intervening unia
phase.

Figure 7 shows the Gibbs energy plot at fixed dimensi
less pressure 7.1 for the case without a bicritical point. T
obtained biaxial phase is stable with respect to decomp
tion into rod- and disk-rich uniaxial phases. This is in acc

FIG. 7. The Gibbs energy vs composition obtained at fixed p
sure 7.1 for the mixture without a bicritical point (q52).
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dance with the property highlighted in@15#, where increasing
the value of the rod-disk excluded volume parameterq im-
proves the stability of the biaxial phase. Because this mo
is restricted to nematic phases I do not discuss the prob
of stability of the biaxial phase vs the formation of a possib
smectic phase or the competition between the formation
the smectic phase and the decomposition of the biaxial ph
into two uniaxial ones at high pressure.

IV. CONCLUSIONS

On the basis of the second virial theory of a rod-di
mixture, I show the possibility of a different type of phas
diagram without the bicritical isotropic-biaxial point at th
equimolar concentration, where the biaxial phase appear
be separated from the isotropic phase by the uniaxial ph
This entails that the transition from the isotropic to uniax
phase is of second order, i.e., the order parameters ch
continuously. Such a situation for mixed systems has, to
knowledge, not been explained so far. In the literature th
exist some indications of the first-order transition pheno
enon between rodlike and disklike phases in one-compon
systems@16,17#. An early one, which also found the biaxia
phase, is due to Li and Freed@16#, who consider a lattice
model of infinitesimally thin rectangular mesogens intera
ing via both steric and attractive forces. However, in a ly
tropic system of mesogens interacting through purely rep
sive forces, the model does not predict the phase withD2h
symmetry at all, although such a possibility is well know
from theoretical and computer simulations of hard-core bi
ial objects. Also in the diagrams exhibiting the biaxial pha
they observe an unusual sequence of transitions, namely
biaxial phase always melts into a discotic one upon lower
the temperature at constant pressure or density. Such re
being far from reality, might be caused by the tw
dimensional character of the molecules considered or by
ficiencies of the approximations used.

More conventional are the results of Toledanoet al. @18#,
who show that a general Landau analysis, albeit of the o
component system, allows for the possibility of a first-ord
transition line from the calamitic~rodlike! phase to the dis-
cotic phase. However, at the same time this line does not
with a bifurcation to the biaxial phase.

The case most closely related to that analyzed here m
be, surprisingly, the report of Yu and Saupe@2#, where they
also mentioned the sodium decylsulfate system in which,
sides a phase diagram similar to the lyotropic mixture
potassium laurate, decanol, and water (D2O), it is possible to
observe a direct first-order transition between calamitic a
discotic nematic liquid crystals. A similar case has been
vestigated by Amaral@19#.

The discussion presented in this paper might be regar
as a partial theoretical explanation to this experimental fi
ing. Since lyotropic systems with biaxial phases also exh
the feature of reentrant phenomena, i.e., a sequence of
sitions such as isotropic to uniaxial to biaxial to uniaxial
isotropic, a full explanation of the Yu-Saupe phase diagr
might be achieved through constructing a mixture theory
which micelles are allowed to change identity.

Here I have analyzed the influence of the rod-disk e
cluded volume parameter on the type of phase diagram.

s-
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forming a uniaxial-biaxial nematic bifurcation analysis o
the L2 model, I found the critical value of the rod-disk p
rameter for which the bicritical isotropic-biaxial point disa
pears. The conclusion I would like to stress here is that
factor that is responsible for the increased stability of
biaxial phase is also responsible for the vanishing of
bicritical point. This conclusion refers to the group of the
ries restricted to theL2 model. Although this may be re
garded as a rough approximation, all theoretically found a
examined instances of a stable biaxial phase are within
L2 modelonly.

Inclusion of higher-order terms in the interaction kern
rather leads to the demixing phenomena of the biaxial ph
into two uniaxial ones. What I call second virial theory mig
be interpreted in two ways. First, it is the Onsager-ty
model where the interaction parameters used refer to the
interaction potential of the particles. Then disregard
higher virial terms in the free energy functional may intr
duce significant differences into the analysis, as is kno
t.

tt.
e
e
e
-

d
e

l
se

e
al

g

n

from ~exact! computer simulations. In the second interpre
tion, the kernel interaction parameters may be regarded
renormalized ones, effectively taking into account the infl
ence of higher virial contributions. Such a renormaliz
model allows one to obtain very good results, both for t
static and for the hydrodynamic properties of a nema
phase@20#.

Designing mesogenic molecules whose structure of m
tual interaction is dominated byL2 terms may be the key to
the synthesis of the thermotropic liquid crystal compoun
with the so intensely searched for stable biaxial phase. M
work remains to be done to discover the influence of r
molecular factors on the interaction kernel parameters, e
cially those that may promoteL2 terms.
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